首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  国内免费   2篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   11篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   10篇
  2002年   5篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有118条查询结果,搜索用时 15 毫秒
41.
A radioactively-labelled glycosphingolipid, asialo-GM1, has been incorporated into phosphatidylcholine multilamellar vesicles. After incubation with ferritin-Ricinus communis agglutinin 60 (RCA 60) conjugate at different temperatures, the vesicles were separated from the conjugate by discontinuous density gradient ultracentrifugation. Measurement of the distribution of the radioactively-labelled asialo-GM1 in the pelleted conjugate fraction and freeze-etch electron microscopy of the vesicle fraction indicate that the decrease in labelling of asialo-GM1-containing vesicles by ferritin-RCA 60 conjugate with increasing temperatures (Tillack, T.W., Wong, M., Allietta, M. and Thompson, T.E. (1982) Biochim. Biophys. Acta 691, 261–273) reflects a decrease in apparent binding affinity rather than an ability of the conjugate to extract glycolipid from the phospholipid bilayer after binding.  相似文献   
42.
Rhim JH  Jang IS  Yeo EJ  Song KY  Park SC 《Aging cell》2006,5(6):451-461
Previously, we reported that lysophosphatidic acid (LPA)-induced adenosine 3',5'-cyclic monophosphate (cAMP) production by human diploid fibroblasts depends on the age of the fibroblasts. In this study, we examined the role of A-kinase anchoring proteins (AKAP) in the regulation of LPA-stimulated cAMP production in senescent fibroblasts. We found that levels of protein kinase C (PKC)-dependent AKAPs, such as Gravin and AKAP79, were elevated in senescent cells. Co-immunoprecipitation experiments revealed that Gravin and AKAP79 do not associate with adenylyl cyclase type 2 (AC2) but bind to AC4/6, which interacts with calcium-dependent PKCs alpha/beta both in young and senescent fibroblasts. When the expression of Gravin and AKAP79 was blocked by small interference RNA transfection, the basal level of cAMP was greatly reduced and the cAMP status after LPA treatment was also reversed. Protein kinase A showed a similar pattern in terms of its basal activity and LPA-dependent modulation. These data suggest that Gravin and to a lesser extent, AKAP79, may play important roles in maintaining the basal AC activity and in coupling the AC systems to inhibitory signals such as Gialpha in young cells, and to stimulatory signals such as PKCs in senescent cells. This study also demonstrates that Gravin is especially important for the long-term activation of PKC by LPA in senescent cells. We conclude that LPA-dependent increased level of cAMP in senescent human diploid fibroblasts is associated with increases in Gravin levels resulting in its increased binding with and activation of calcium-dependent PKC alpha/beta and AC4/6.  相似文献   
43.
A-kinase anchoring proteins (AKAPs) target the cAMP-regulated protein kinase (PKA) to its physiological substrates. We recently identified a novel anchoring protein, called AKAP-Lbc, which functions as a PKA-targeting protein as well as a guanine nucleotide exchange factor (GEF) for RhoA. We demonstrated that AKAP-Lbc Rho-GEF activity is stimulated by the alpha subunit of the heterotrimeric G protein G12. Here, we identified 14-3-3 as a novel regulatory protein interacting with AKAP-Lbc. Elevation of the cellular concentration of cAMP activates the PKA holoenzyme anchored to AKAP-Lbc, which phosphorylates the anchoring protein on the serine 1565. This phosphorylation event induces the recruitment of 14-3-3, which inhibits the Rho-GEF activity of AKAP-Lbc. AKAP-Lbc mutants that fail to interact with PKA or with 14-3-3 show a higher basal Rho-GEF activity as compared to the wild-type protein. This suggests that, under basal conditions, 14-3-3 maintains AKAP-Lbc in an inactive state. Therefore, while it is known that AKAP-Lbc activity can be stimulated by Galpha12, in this study we demonstrated that it is inhibited by the anchoring of both PKA and 14-3-3.  相似文献   
44.
45.
Vascular dysfunction resulting from diabetes is an important factor in arteriosclerosis. Previous studies have shown that during hyperglycaemia and diabetes, AKAP150 promotes vascular tone enhancement by intensifying the remodelling of the BK channel. However, the interaction between AKAP150 and the BK channel remains open to discussion. In this study, we investigated the regulation of impaired BK channel‐mediated vascular dysfunction in diabetes mellitus. Using AKAP150 null mice (AKAP150?/?) and wild‐type (WT) control mice (C57BL/6J), diabetes was induced by intraperitoneal injection of streptozotocin. We found that knockout of AKAP150 reversed vascular remodelling and fibrosis in mice with diabetes and in AKAP150?/? diabetic mice. Impaired Akt/GSK3β signalling contributed to decreased BK‐β1 expression in aortas from diabetic mice, and the silencing of AKAP150 increased Akt phosphorylation and BK‐β1 expression in MOVAS cells treated with HG medium. The inhibition of Akt activity caused a decrease in BK‐β1 expression, and treatment with AKAP150 siRNA suppressed GSK3β expression in the nuclei of MOVAS cells treated with HG. Knockout of AKAP150 reverses impaired BK channel‐mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus.  相似文献   
46.
The conserved DPY-30 is an essential component of the dosage compensation complex that balances the X-linked gene expression by regulation of the complex formation in Caenorhabditis elegans. The human DPY-30-like protein (DPY-30L) homolog is a conserved member of certain histone methyltransferase (HMT) complexes. In the human MLL1 (mixed-lineage leukemia-1) HMT complex, DPY-30L binds to the BRE2 homolog ASH2L in order to regulate histone 3-lysine 4 trimethylation. We have determined the 1.2-Å crystal structure of the human DPY-30L C-terminal domain (DPY-30LC). The DPY-30LC structure, harboring the conserved DPY-30 motif, is composed of two α-helices linked by a sharp loop and forms a typical X-type four-helix bundle required for dimer formation. DPY-30LC dimer formation is largely mediated by an extensive hydrophobic interface with some additional polar interactions. The oligomerization of DPY-30LC in solution, together with its reported binding to ASH2L, leads us to propose that the hydrophobic surface of the dimer may provide a platform for interaction with ASH2L in the MLL1 HMT complex.  相似文献   
47.
A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X?=?COOH, CONH2, CONHNH2, CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X?=?SO3H, SO2NH2, SO2NHNH2, SO2NHOH, SO2NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I–XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.  相似文献   
48.
Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic β-cells involves ion channels and mobilization of Ca2+ and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-β-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca2+ currents, and attenuates cytoplasmic accumulation of Ca2+ and cAMP in β-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity.  相似文献   
49.
Eradications of kiore or Pacific rats (Rattus exulans) from islands around New Zealand have been followed by responses from resident species of coastal plants, invertebrates, reptiles and seabirds. These responses are compared with an invasion by ship rats (Rattus rattus), which devastated populations of invertebrates, birds and bats. Post-eradication responses only approximate the effects of invasions because recovery is limited to the residual pool of native species. Greater effects of kiore are indicated by adding incompatible species confined to rat-free locations. The extended list includes at least 15 species of invertebrates, two species of frogs, tuatara (Sphenodon punctatus), 11 species of lizards and 9 species of seabirds. The analyses indicate direct and indirect effects of kiore similar to those reported after ship rat invasions. This is despite indications from the literature that kiore are the least damaging of the three commensal rat species.  相似文献   
50.
Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)‐labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3‐virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co‐injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell‐to‐cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3‐vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actin‐dependent RNA movement. The 5′ methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5′ cap failed to form granules and was degraded in the cytoplasm. Removal of the 3′ untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual‐labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER‐bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号